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ABSTRACT

In completable planning, a planning system is given the ability to defer goals
which it can prove to be achievable. This has the advantages of allowing the utiliza-
tion of runtime information in planning and enabling a planner to use less precise a
priori information without sacrificing guarantees of success. In this paper, we extend
completable planning to goals which are only probably achievable, thus extending
its scope to a wider variety of problems. We also define completable plans in terms
of its constituent reactive plan components, conditionals and repeat-loops, which
achieve the deferred goals, and we discuss the costs incurred by completable plan-
ning in terms of runtime evaluation cost, plan flexibility, a priori planning cost, and
guarantees of success. In extending completable planning to probable achievability,
we also introduce incremental explanation-based learning strategies for learning
probably completable conditionals and probably completable repeat-loops, and
demonstrate the learning of a probably completable plan in a simple train route-plan-
ning example.

3 This research was supported by the Office of Naval Research under grant N-0014-87-K-0309.



Learning Probably Completable Plans

INTRODUCTION
Recent years have seen a growing interest in planning systems which have both

a priori planning capabilities for providing goal-directedness, and reactive runtime
capabilities for providing flexibility and sensitivity to the runtime environment
[Drummond90, Gervasio90, Kaelbling88, Mitchell90, Turney89], in response im-
practicality of classical planning [Chapman87, Sacerdoti77, Sussman73], which
constructs complete provably-correct plans but requires complete and correct a pri-
ori information to do so--an unrealistic demand in many real world domains. These
same domains, however, although uncertain in some aspects, also often follow par-
ticular predictable patterns of behavior, and thus some a priori planning is both possi-
ble and desirable, in contrast to the unpredictable, dynamic environments addressed
by situated action [Agre87, Suchman87].

In [Gervasio90], we presented an integrated planning approach wherein a classi-
cal planner is augmented with the ability to defer achievable goals, where achievabil-
ity is simply defined as the existence of a plan which would achieve the goal during
execution. If a planner could prove the existence of such a plan-not necessarily by
determining the plan itself-the goal could be deferred until execution, when addi-
tional information could become available to make better-informed planning deci-
sions. Furthermore, a system minimizes its a priori information requirements by be-
ing able to use less precise information. Also, because the deferred goals have
achievability proofs, a system can still construct provably-correct plans. We also
presented contingent explanation-based learning, a strategy for learning general
completable reactive plans, which introduced the idea of conjectured variables to
distinguish between a priori and runtime planning decisions.

A limitation of this original approach to completable planning was the require-
ment of absolute achievability. Consider the problem of hammering a nail into the
wall, where a pound action will often result in driving the nail further into the wall,
but may sometimes end up getting the nail bent instead. A completable planner re-
quiring absolute achievability would not be able to solve such a problem, because
for the same knowledge limitations reason that it cannot determine a priori the pre-
cise number of pounding action to use, it cannot guarantee that the nail will not be
bent by a pounding action. However, a completable planner which can reason about
actions with different possible outcomes, and construct or learn alternative plans, can
construct probably completable plans which have a good chance of success.

In this paper, we extend the completable planning approach to probable achiev-
ability. Introducing probable achievability not only extends the scope of complet-
able planning to a wider variety of planning problems, but also opens up new oppor-
tunities to investigate the learning of completable plans. We begin by formalizing
the idea of completable planning by defining the various components of a complet-
able plan and the achievability constraints on these different components and dis-
cussing some of the cost tradeoffs involved in completable planning. We then pres-
ent incremental learning strategies for learning probably completable plans and

Idemonstrate its use in learning an increasingly completable plan for determining
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travel routes in a simple train domain. Finally, we discuss some related and future
work.

COMPLETABLE PLANS
In completable planning, a planner may decide upon certain actions a priori and

use runtime information gathered through its sensors to decide upon other actions
during execution. All projection is done prior to execution, and runtime decision-
making is limited to being reactive-i.e. during execution, the system decides on its
next action on a predetermined basis, represented by conditionals and repeat-loops.1

Uncertainty is characterized by using state descriptions which correspond to a set of
states rather than unique, single states. Let a state description S be a conjunction of
atomic sentences, and states(S) represent the set of all states in which S is satisfied.
For a plan component p in a plan P, let PREC(p) be the state description resulting
from regressing the goal back through all later plan components in P to p. Similarly,
let EFF(p) be the result of projecting the initial state through all earlier plan compo-
nents in P to p.

Given an initial state description I and goal state description G, a provably-cor-
rect plan P for I and G is an ordered sequence of plan components of the form:
{Pl;P2;-.-;Pn), constrained in the following manner.

states(I) g states(PREC(pl))

IFor pi r= Pl'P2,..-,Pn-l), states(EFF(p-o) states(PREC(pi+l))
states(EFF(pn)) c states(G).

This is shown graphically inFigure 1.

states(PREC 1)) states(PREC(p2)) states(PREC(p3)) states(G)

Istates(1) states(EFF(p 1)) states(EFF(p2)) statc(P p)
Figure 1. A plan consisting of unconditional actions.

IThere are three types of plan components: unconditional actions, conditionals,
and repeat loops. Unconditional actions are actions to be executed without environ-
mental input. Classical planners [Chapman87, Sacerdoti77, Sussman73] can be
characterized as constructing plans consisting solely of unconditional actions, and
thus unconditional actions can be said to constitute the classical part of a completable
plan while conditionals and repeat-loops, the reactive part. In completable planning,
the deferred goals addressed by the reactive components must be achievable, and
thus constraints must be placed on conditionals and repeat-loops to guarantee tneir
achievement of the preconditions of succeeding actions.I
1. The decision to allow no further planning during execution is not a theoretical claim. The primary focus
of this research is on learning, and as such, the system currently has simple planning capabilities. However.
other planning capabilities may be added as the research progresses and new learning avenues ae explored.

2
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Probably Completable Conditionals
Conditionals deals with the problem of over-general initial state descriptions.

Prior to execution, all a planner may know is that at a particular point in the execution
of a plan, it will be in one of several possible states satisfying some description. How-
ever the different states satisfying this description may require different actions to
achieve the preconditions for succeeding actions. For example, in planning to get
to some higher floor in a new building, after going through the front door, all you may
know is that you will be in the lobby. However, depending upon various factors such
as whether there will be a staircase or an elevator or both, your proximity to each one,
which floor you wish to go to, and the functionality of the elevator, you would like
to take different actions. Through conditionals, decisions can be made during execu-
tion regarding appropriate actions, using any additional information which becomes
available at that point in execution.

A conditional is of the form: (COND cl --) qj; c2 -- q2; ...; cn -- qn} where each
ci - qi is an action-decision rule which represents the decision to execute the plan
qi when the test ci yields true. Like the situation-action type rules used in reactive
systems such as [Kaelbling88, Mitchel90, Schoppers87], action-decision rules map
different situations into different actions, allowing a system to make decisions based
on its current environment.

In a completable plan, however, a conditional pi = {COND cl -4 qI; c2 -+ q2;
.. ; cn -- qn) must also satisfy the following constraints for achievability:

1. Exhaustiveness: states(clAc2A...Acn) must be an exhaustive subset of
states(EFF(pi 1))

2. Observability: each ci must consist of observable conditions, where an
observable condition is one for which there exists a sensor which can verify
the truth or falsity of the condition.

3. Achievement. for each qi, states(EFF(q-)) c states(PREC(pi+O).
This is shown graphically in Figure 2. For probably completable plans, the exhaus-

I states(EFF(pi.,)) states(c,) statcs(EFF(ql)) states(PREC(p.. 1))

states statcs(EFF(q 2))statcs(c3) ates(EFF(q3))
Figure 2. A completable conditional pi with three action-decision rules.

Itiveness constraint is relaxed to require only probable exhaustiveness, and the greater
the coverage, the greater the conditional's chance of achieving PREC(pj+1). The ob-
servability constraint requires knowledge of sensory capability, and here we use the
term sensor in the broader sense of some set of sensory actions, which we will assume
the system knows how to execute to verify the associated condition. It is needed to
ensure that the conditional can be successfully evaluated during execution. Finally,
the achievement constraint ensures that there the actions taken in the conditional

1 3
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achieve the preconditions of the succeeding plan component. Provided these three
constraints are satisfied, the conditional is considered probably completable, and the
goal PREC(pi+1) of the conditional is probably achievable.
Probably Completable Repeat-Loops

A repeat-loop is of the form: <REPEAT q UNTIL c), which represents the deci-
sion to execute the plan q until the test c yields true. Repeat loops are similar in idea
to servo-mechanisms; but in addition to the simple yet powerful failure-recovery
strategy such mechanisms provide, repeat loops also permit the construction of re-
peated action sequences achieving incremental progress towards the goal, which
may be viewed as a reactive, runtime method of achieving generalization-to-N [Co-
hen88, Shavlik87]. Repeat loops are thus useful in completable plans for mainly two
reasons: simple failure recovery and iterations for incremental progress.

Repeat-loops for simple failure-recovery are useful with actions having nonde-
terministic effects, which arise from knowledge limitations preventing a planner
from knowing which of several possible effects a particular action will have. For ex-
ample, in attempting to unlock the door to your apartment, driving the key to the key-
hole will most often result in the key lodging into the hole. However, once in a while,
the key may end up jamming beside the hole instead; but repeating the procedure of-
ten achieves the missed goal. In completable planning, if an action has several possi-
ble outcomes, and if the successful outcome is highly probable, and if the unsucces-
sful ones do not prevent the eventual achievement of the goal, then a repeat-loop can
be used to ensure the achievement of the desired effects.

A repeat-loop p = {REPEAT q until c) for failure-recovery must satisfy the fol-
lowing constraints for achievability:

1. Observability: c must be an observable condition
2. Achievement. c must be a probable effect of q
3. Repeatability: the execution of q must not irrecoverably deny the

preconditions of q until c is achieved.
This is shown graphically in Figure 3a. The observability constraint is needed, once
again, to be able to guarantee successful evaluation, while the achievement and re-
peatability constraints together ensure a high probability of eventually exiting the re-
peat loop with success. As with the exhaustiveness constraint for conditionals, the
repeatability constraint may be relaxed so that the execution of q need only probably
preserve or probably allow the reachievement of the preconditions of q.

Repeat-loops for incremental progress deal with over-general effect state de-
scription. Once again, knowledge limitations may result in a planner not having pre-
cise enough information to make action decisions a priori. In actions which result
in changing the value of a quantity, for example, your knowledge may be limited to
the direction of change or to a range of possible new values, which may not be specif-
ic enough to permit making decisions regarding precise actions-for example, deter-
mining the precise number of action repetitions or the precise length of time over
which to run a process in order to achieve the goal. The implicit determination of

5 4
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I
such values during execution is achieved in completable planning through the use
of repeat-loops which achieve incremental progress towards the goal and use run-
time information to determine when the goal has been reached.

A repeat-loop p = {REPEAT c until p) for incremental progress must satisfy the
following constraints for achievability:

1. Continuous observability: c must be an observable condition which checks
a particular parameter for equality to a member of an ordered set of values-
for example, a value within the range of acceptable values for a quantity.

2. Incremental achievement each execution of q must result in incremental
progress towards and eventually achieving c-i.e. it must reduce the
difference between the previous parameter value and the desired parameter
value by at least some finite non-infinitesimal e,

3. Repeatability: the execution of q must not irrecoverably deny the
preconditions of q until c is achieved.

This is shown graphically in Figure 3b. The continuous observability constraint en-
u\sumssad ts(c) teradons

probable successfuloutcome

a. Failure recovery. b. Incremental Progress.
Figure 3. Completable repeat-loops.

sures that the progress guaranteed by the incremental achievement and repeatability
constraints can be detected and the goal eventually verified. For both failure recov-
ery and interactions for incremental progress, if the repeat-loop satisfies the con-
straints, the repeat-loop is considered probably completable and the goal c is achiev-
able.

Completable Plans vs. Universal Plans
A universal plan [Schoppers87] is the compilation of a planner's knowledge of

actions with respect to a goal into a set of situation-action rules which provide a sys-
tem with advice on what to do next in all possible situations, and may thus be viewed
as the transformation of a set of classical plans into a purely reactive plan. A complet-
able plan with conditionals is essentially derivable from a set of classical plans as
well-i.e. a completable plan with a conditional may be viewed as a set of classical
plans, one for each alternative. The primary difference is that in a universal plan, all
the action decision are made during execution while in a completable plan, only par-
ticular planning decisions are left for execution.

For a particular planning problem, let U be a universal plan and C be a complet-
able plan, where U corresponds to some complete set of classical plans P and C corre-
sponds to some subset P' of P. Assume that the procedure for evaluating both a uni-
versal plan and a conditional takes as input a set of rules and outputs one as the ruleto be applied. Let:

* 5
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r = the average number of action-decision rules in a conditional P
u = the number of situation-action rules in U
c = the average cost of evaluating a rule

Then rc is the cost of evaluating a conditional and ucr is the cost of evaluating the
situation-action rules. In the worst case, C will itself be equivalent to a universal plan
for P', with every action determined by a conditional containing all the situation-ac-

tion rules for P', but since P' g P, rcr < ucr. Furthermore, let:
n = the average number of actions taken using U to achieve the goal
d = the number of deferred decisions-i.e. conditionals-in C.

Since every action decision in U is made by evaluating the rules of U, the total run-
time evaluation cost of U is nucr, while that of P is drcr. Since in P some action deci-
sions will generally be made a priori, d will generally be less than n, and thus, drcr
< nucr. Intuitively, it seems the size r of a conditional would be much less than the
size u of the universal plan, since a conditional is a very restricted set of action-deci-
sion rules for achieving a particular goal, whereas a universal plan encompasses all
the intermediate goals and states, and thus probably drcr << nucr. For the same rea-
son, however, U is much more flexible than C. Furthermore, since U does not check
any preconditions prior to execution, if we let

a = the number of(a priori) preconditions in P
cp = the average cost of verifying a precondition

then C incurs an additional cost acp over U for verifying plan applicability. However,
this cost comes with the benefit of a completable planner being able to determine,
before any actions are executed, whether the plan will achieve the goal. In the imper-
fectly-characterizable but fairly well-behaved domains for which completable plan-
ning is designed, trading off flexibility for guarantees of success is probably an ad-
vantageous decision. Current work includes designing experiments to investigate
this tradeoff as well as the actual costs incurred, and the relative benefits and disad-
vantages brought by completable planning.

LEARNING PROBABLY COMPLETABLE PLANS
The planning problem has provided a wealth of research opportunities for the

learning community, as evidenced by work such as [Chien89, DeJong89, Ham-
mond86, Minton85, Mitchell90, Mooney88]. In [Gervasio9O], explanation-based
learning [DeJong86, Mitchell86] was shown to be useful in learning completable
plans which involved the deferment of determining the length of time over which to
let a process run to achieve a particular value for a continuously-changing quantity.
Such a deferred decision may be represented in the formalization presented in the
previous section by a repeat-loop iterating over a wait or a no-op, with the exit condi-
tion c testing for the goal value. Repeat-loops for incremental progress can thus be
learned by constructing explanations about how the general behavior of repeated ac-
tions guarantees incremental progress towards the goal. Here, we present an incre-mental strategy for learning conditionals and repeat-loops for simple failure-recov-

ery in probably completable plans.

I
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The idea of probably completable plans lends itself naturally to incremental
learning strategies. Conditionals, for example, represent a partitioning of a set of
states into subsets requiring different actions to achieve the same goal. With prob-
able achievability, a plan may include only some of these subsets. As problems in-
volving the excluded subsets are encountered, however, the plan can be modified to
include the new conditions and actions. Similarly, incremental learning can be used
to learn failure-recovery strategies within repeat-loops. The motivation behind the
incremental learning of reactive components is similar to the motivation behind
much work on approximations and learning from failure, including [Bennett9O,
Chien89, Hammond86, Mostow87, Tadepalli89]. The primary difference between
these approaches and completable planning is that in these approaches, a system has
the ability to correct the assumptions behind its incorrect approximations and thus
tends to converge upon a single correct solution for a problem. In completable plan-
ning, uncertainty is inherent in the knowledge representation itself and the system
instead addresses the problem of ambiguity through reactivity. As a system learns
improved reactive components, it thus tends to increase a plan's coverage of the pos-
sible states which may be reached during execution.
Learning Probably Completable Conditionals

Since preconditions for the actions in an action-decision rule may be satisfied
either through initial state information or through the conditions in the rule, a general
plan learned through EBL2 must be further processed to distinguish between these
two types of preconditions:

For each precondition pr
Ifpr is not satisfied by I
thenlfpr is observable

then Find all operators supported by pr
Make the execution of that operator conditional on pr
Remove pr from the general plan's preconditions.3

Recall that for conditionals to be completable, they must satisfy the constraints
of exhaustiveness, observability, and achievement. Since the plans here are derived
from explanations, the constraint of achievement is already satisfied. The procedure
above checks for observability. For the exhaustiveness constraint, let X be the de-
sired minimum coverage, where X can be a user-supplied value or one computed
from other parameters such as available resources and importance of success. Cover-
age can be represented by probabilities, either qualitative or quantitative, in our case,
qualitative (i.e. using qualitative terms such as "usually" to denote high probability).
Then the exhaustiveness constraint is satisfied in a conditional {COND cl --) ql; ...
;cn -- qn iff the probability of (civc2v...vcn) is at least X.
2. EBL is used in completable planning to learn macro-operators or general plans. The planner then simply
looks for a single applicable general plan when given a planning problem. No chaining on macro-operators
is performed.
3. The distinction between initial state information and runtime information is an important one in complet-
able planning, and it is assumed that the learning system keeps track of or is able to eason about what informa-
tion was available initially and what came in during execution.

7
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A conditional manifests itself in an explanation a multiple, disjunctive paths be-
tween two nodes (Figure 4a), with a path representing one action-decision rule, its
leaves which cannot be satisfied in the initial state forming the condition and the op-
erators along the path forming the action.4 Since coverage may be incomplete, a sys-
tem may at one time fail to satisfy any of the conditions within a conditional, in which
case, the system has the option of learning a new alternative (Figure 4b) to solve the
current problem and to increase coverage in future problems (Figure 4c). Merging

a. old conditional b. new alternative c. new conditional
Figure 4. Explanation Structures in learning new conditionals.

a new rule into a conditional can be done using the old plan and a plan with the new
alternative as follows: 5

new-to-add := plan components in new plan not matching any in old plan
old-to-change := plan component in old plan not matching any in new plan
Make a new action-decision rule using new-to-add
Append the new rule to the action-decision rules of old-to-change
For each precondition pr in the new plan

If pr is not already in the old plan
then add pr to the preconditions of the old plan.

Learning Probably Completable Repeat-Loops
Repeat-loops for simple failure-recovery address the problem of actions with

nondeterministic effects or multiple possible outcomes, and thus repeat-loops are
first constructed by identifying such actions in the general plan:

For each action a in the plan
If the outcome of a used in the plan is a probable outcome among others
thenIf the desired outcome c is observable

then Construct a repeat loop for a.
Recall that for a repeat-loop for failure to be completable, it must satisfy the con-
straint of repeatability aside from the constraints of observability and achievement.
If the unsuccessful outcomes of a do not prevent the repetition of a, then the repeat-
ability constraint is satisfied, and the probable eventual achievement of the desired
effects is guaranteed. However, for unsuccessful outcomes which deny the precondi-
tions to a, actions to recover the preconditions must be learned. These precondition-
recovery strategies within a repeat-loop can be characterized as a conditional, where
4. Initially, a plan may contain a conditional containing only one action-decision rule, a case arising when
therm is only one known action but some of whose actions need to be verified at execution.

5. Plans (their explanations) anm associated with specific and general bindings (see [Mooncy86] for more on
bindings). This procedure uses the specific bindings of both plans to determine equality and as equal compo-
nents and preconditions arc found, the combined general bindings arc updated to effectively achieve the merg-
ing, with the final general bindings are used in the modified old plan.

8
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the different states are the different outcomes, the different actions are the different
precondition-recovery strategies, and the common effect state is the precondition
state of the action a. If we let ui be an unsuccessful outcome, and ri be the recovery
strategy for ui, then a repeat-loop eventually takes the form <REPEAT {q; [COND
ul --) rl; ... ; un -- rn] ) UNTIL c). Learning the embedded conditional for failure
recovery can be done as in the previous section.
Example

A completable planning system implemented in Common LISP on an IBM RT
Model 125 was given the task of learning a plan to get from one small city to another
going through two larger cities using a train. The primary source of incompleteness
preventing complete a priori planning is the system's knowledge with regard to the
state of the railroads. In order for a system to get from one city to another, the cities
have to be connected by a railroad, and the railroad has to be clear. For a railroat,
to be considered clear, it must be not flooded, not be congested with traffic, be free
of accidents, and not be under construction. These conditions cannot always be veri-
fied a priori for all railroads, hence the need for conditionals.

The training example involves getting from the city of Wyne to the city of Ruraly,
where the rail connectivity between the two cities is shown in Figure 5. Here, the rail-
road A-B is a major railroad and sometimes gets congested. Also, the northern rail-
roads to and from X, C, and Z are susceptible to flooding. And accidents and con-
struction may occur from time to time.

S ' - - B z "Ruraly

D - - -. E N

T
Figure 5. Rail connectivity between Wyne and Ruraly.

Learning Initial Plan. The initial training example given to the system is the route
Wyne-A-B-Ruraly, since this is generally the quickest way to get from Wyne to Ru-
raly.7 The initial derived plan is processed to determine conditionals and the learned
general plan is shown in Figure 6. This is a plan for getting from one city to another

6. In the learning instances presented here, only the Wyne-to-Ruraly problem is used. This is partly to sim-
plify the presentation and partly to avoid confounding the problem of learning conditionals with the generaliza-
tion-to-N problem [Cohen88, Shavlik87], of which route-planning between several cities can be seen as an
instance. One drawback of this decision is that the issue of evaluating conditionals can be sidestepped for the
meantime; by presenting the system with alternatives in the order of their desirability, the action-decision rules
in the resulting conditional can simply be evaluated in sequence until one applies. A possible non-implementa-
tion solution would be to let all the action-decision rules fire and then to use some metric (for example, route-
length) to decide between the applicable alternatives.
7. The optimization problem is a very interesting research problem in itself, but beyond the scope of the cur-
rent research. Here, we assume that the expert provides already optimized solutions as training examples.

9
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PLAN I[COMPS
[COND ((NOT (ACC ?RT22692)) (NOT (CONSTR ?RT22692)))

-> ((G ?AGT22688 ?CITY 122689 ?CTY222690 ?RT22692))
[COND ((NOT (ACC ?RT22697)) (NOT (CONSTR ?RT22697)) (NOT rRAFF ?RT22697)))

-> ((GO ?AGT2268 ?CnTY222690 ?C1TY222695 ?RT22697))
[COND ((NOT (ACC 7122702)) (NOT (CONSTh ?RT22702)))

-> ((GO ?AGT22698 ?C1TY222695 7C1TY222700 ?T2702))
[PRECS (AT ?AGT22688 ?CIY 122689) (CONN ?CTY 122689 ?CITY222690 ?7R22692) (NOT (TRAFF ?RT22692))

(NOT (FLOOD ?RT22692)) (CONN ?CrTY222690 ?CrTY222695 7RT72697) (NOT (FLOOD ?RT22697)) (CONN
?CITY222695 ?CTY222700 ?RT22702) (NOT (TRAFF ?Ri'22702)) (NOT (FLOOD ?RT22702))

[EFFS (AT ?AGT22688 ?CITY222700)I
[EXPL [EXPLANATION for (AT AMATRAK RURALY)]]

Figure 6. Initial Learned Plan.8

with two intermediate stops, where only the railroad between the two intermediate
cities is susceptible to heavy traffic and must thus be checked for it.
Learning Alternative Plans. When the system encounters a situation in which none
of the conditions in a conditional is satisfied-in this example, (not (has-heavy-traf-
fic A-B)) proves false just as the system is to execute (go Amatrak A B A-B) to
achieve (at Amatrak B)-the system needs to learn a new route from A to B in order
to get back on track. The solution given to the system is the route A-C-B, which gets
the system to B and allows it to continue with the next step in its original plan and
achieve its goal of getting to Ruraly. From this experience, the system modifies its
old plan to include the new alternative of going through another city between the two
intermediate cities. The system thus now has two alternatives when it gets to city
A. When it encounters a situation in which A-B is congested and A-C is flooded,
it is given another alternative solution, A-D-E-B, from which it learns another plan

to get from A to B and modifies the old plan as before. Now, in planning to get from
Wyne to Ruraly, the system is able to construct the plan in Figure 7.
PLAN I
[COMPS

[COND ((NOT (ACC WYNE-A)) (NOT (CONSTR WYNE-A))) -> ((GO AMATRAK WYNE A WYNE-A))I
[COND ((NOT (ACC A-B)) (NOT (CONSTR A-B)) (NOT MURFF A-B)) -> ((GO AMATRAK A B A-B))((NOT (ACC A-C)) (NOT (OONSTR A-C)) (NOT (FLOOD A-C)))

-(((GO AMATRAK A C A-C))(COND (((NOT (ACC C-B)) (NOT (CONSTR C-B)) (NOT (FLOOD C-B)))
-> ((GO AMATRAK C B C-B)))))

(N((NOT ( AC C C-- B)) ((N(OT (ONS - ( F
->(G (W MAA RAK - BW-D)

-> (((OA , C. D-TD))
(O~V(((NOT (AC-13)) (NOT (CONM-IB))) ->• {q o A 'T']K E. E-IB))))) I

[COND ((NOT (ACC B-RURALY)) (NOT (CONSTR B-RURALY)))
-> ((GO AMATRAK B RURALY B-RURALY))]

[PRECS (AT AMATRAK WYNE) (CONN WYNE A WYNE-A) (NOT (TRAFF WYNE-A)) (NOT (FLOOD
WYNE-A)) (CONN A B A-B) (NOT (FLOOD A-B)) (CONN B RURALY B-RURALY) (NOT (TRAFF

B-RURALY)) (NOT (FLOOD B-RURALY)) (CONNA C A-C) (NOT (TRAFF A-C)) (CONN C B C-B) (NOT
(TRAFF C-B)) (Co'AC( (DA--) (9TFlfFA-D) ( r(oA-D)) (COD i E !D-.) (OT T O 'D-')) (NO'T
(FLDOD -,]! (C O, E -3) (NO-[ 'F E-B)) (NOT (:T X -IB))

JEFFS (AT AMATRAK RURALY)J
[FXPL (EXPLANATION for (AT AMATRAK RURALY)]]

Figure 7. Final specific plan for getting to Ruraly from Wyne.9

8. For brevity, the following abbreviations have been used: conn for connected, acc for has-accident, constr
for under-construction, traff for has-heavy-traffic, and flood for flooded.
9. Portions added by new plans shown in two sets of italics.
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DISCUSSION & CONCLUSIONS
Note that there are usually many possible alternative plans-in the railroad-rou-

te-planning problem, for example, there are as many train routes as there are rail-
roads between any two cities. Unless there is reason to learn new alternatives, how-
ever, effort will not be expended in learning these alternatives. This minimizes the
execution-time cost of evaluating conditionals by keeping conditionals small, as
well as the cost of checking preconditions, since new action-decision rules also usu-
ally add preconditions to be checked for plan applicability.

A direction for future work is a more thorough analysis of the tradeoff between
the advantages brought and costs incurred by completable planning. Aside from the
a priori planning cost completable plans have over reactive plans, and the runtime
evaluation cost completable plans have over classical plans, in proving achievability
completable plans also sometimes require knowledge about the general behavior of
actions not always available in traditional action definitions. On the other hand,
completable planning also minimizes a priori information requirements. Another di-
rection for future work is in integrating probabilities more fully into the completable
planning framework. This would involve using qualitative probabilities (as in [Wel-
1man90]) or quantitative probabilities (as in [Hanks9O]) and characterizing their rela-
tionship to achievability, which may help quantify the notion of achievability as well
as open up new areas in.which to explore learning.

[Martin90] presents a planning approach wherein an a priori strategic planner
defers to the reactive planner those planning decisions the reactive planner has prov-
en (through experience) itself capable of handling. In contrast, the achievability cri-
terion used in our work is knowledge-based, rather than empirical, although a com-
bination of both is currently being investigated. The conditionals in this work are
also related to the work on disjunctive plans, such as [Fox, Mello86], however these
have been focused more towards the construction of complete, flexible plans for clo-
sed-world manufacturing applications, whereas the incremental learning strategy
presented here was designed precisely for problems where accounting for all contin-
gencies is expected to be intractable. The idea of incrementally improving a plan's
coverage has also been investigated in [Drummond90], where a plan's chance of
achieving the goal is increased through robustification, the gradual consideration of
other possible outcomes of actions and construction of failure-recovery strategies
for them. Here, aside actions with different possible outcomes, we deal with the
problem of over-general knowledge. And as discussed earlier, there is also much
related work on learning good approximations in planning, including [Bennett9O,
Chien89, Hammond86, Mostow87, Tadepalli89].

In this paper, we have extended the idea of completable planning by allowing an
a priori planner to defer goals which are only probably achievable. We defined com-
pletable planning in terms of its plan components, as well as the achievability con-
straints on conditionals and repeat-loops, and we discussed various cost tradeoffs.
Finally, we presented and demonstrated incremental strategies for learning condi-
tionals and repeat-loops in completable plans.
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